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SUMMARY 
New concepts for the study of incompressible plane or axisymmetric flows are analysed by the stream tube 
method. Flows without eddies and pure vortex flows are considered in a transformed domain where the 
mapped streamlines are rectilinear or circular. The transformation between the physical domain and the 
computational domain is an unknown of the problem. In order to solve the non-linear set of relevant 
equations, we present a new algorithm based on a trust region technique which is effective for non-convex 
optimization problems. Experimental results show that the new algorithm is more robust compared to the 
Newton-Raphson method. 
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1. INTRODUCTION: METHODS OF FLOW ANALYSIS 

Numerical simulation in fluid mechanics has undergone major developments in recent years in 
relation to numerous fundamental problems and applications which arise in the analysis of 
complex flows occurring with various types of fluids (see e.g. Reference 1). There are few analytical 
solutions for flow problems and researchers in this field wish to model flows by using either 
perturbation techniques on a close solution to their problem or direct computational methods. 
Thus, given a flow domain, the authors aim to define a suitable mathematical form in such a way 
that the set of equations and boundary conditions developed to describe the whole system can be 
successfully discretized and solved numerically. Velocity and pressure are the classic unknowns to 
be considered. 

The mathematical models in this paper are based on conservation of mass and momentum in 
the isothermal case and the constitutive relations for the fluid in question. The incompressibility 
equation and Navier-Stokes equations are obtained for incompressible Newtonian fluids, and 
more complex dynamic equations are written for other constitutive equations,' e.g. models 
derived from viscoelasticity or plasticity. At the present time, important work has led to 
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interesting results in mathematical analysis, including existence, regularity, development of 
singularities2' and change of type4 in relation to the relevant equations. In the computational 
field, various flow simulations are performed involving finite difference5 or finite element6 
techniques. The finite element methods are more widely investigated because they enable easy 
adaptation of a non-regular mesh to a complex domain of flow. However, in that context, grid 
generation methods can be used successfully as conformal mappings (see e.g. References 7 and 8), 
transfinite interpolation, multisurface and two-boundary techniquesg These methods allow the 
physical flow domain to be transformed into a computational domain, using a known trans- 
formation, in order to obtain a regular mesh in the transformed domain where velocity 
computation is related to inviscid fluids" or Newtonian fluids.73 * 

Some years ago we introduced the stream tube method' ' 9  l 2  for incompressible fluids. This can 
also be classified as a geometrical method since the physical domain D is mapped into a 
computational domain D, . However, in contrast to grid generation methods, the unknowns of 
the problem are the pressure and the transformation between the domain D and its transformed 
domain D, . 

In the present paper, only steady flows will be considered, without loss of generality for 
unsteady situations. Before recalling the main assumptions already formulated for plane or 
axisymmetric non-circulatory flows," we propose first a classification of flows which may be 
dealt with by stream tube analysis: 

(1) plane or axisymmetric flows without vortices 
(2) purely circulatory flows or vortex flows. 

In the following we will examine these two classes of flows and their relevant equations. By 

(i) The computational domain is more simple than the original flow domain 
(ii) The transformed lines of the physical streamlines are defined as straight lines or circles. 

performing the transformation of the physical domain, we have in mind two objectives: 

2. THE STREAM TUBE METHOD IN PLANE AND AXISYMMETRIC 
NON-CIRCULATORY FLOWS 

As pointed out earlier, the elements of the stream tube method were initially proposed for plane 
and axisymmetric flows without eddies", l 2  in relation to the incompressibility condition 

We consider two possible expressions for the velocity vector V: 
div V = 0. (1) 

V = u ( x ,  Z)E' + w ( x ,  Z ) E 2  (2) 

V = u,(r, z)e: + v,(r, z)e: (3) 

In both cases the velocity components can be expressed in terms of streamfunctions K ( x ,  z)  or 

for plane flows, in Cartesian co-ordinates x = 1, y = 2, z = 3; 

for axisymmetric flows, using a cylindrical co-ordinate system r = 1, 6 = 2, z = 3. 

H(r,  z )  such that 
aK d K  

u = - (x, z), w =  - - ( x  Y 4, aZ ax (4) 
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Therefore, by definition of the stream function^,'^ K or H is a constant on a streamline (L )  of the 
physical domain. 

Without loss of generality for extension to the planar case, we will consider axisymmetric flows 
in the present case. The main assumptions related to the method are the following: 

(i) There exists a section zo of radius ro where the kinematics is known. 
(ii) The physical domain D, shown in Figure 1, is simply connected with regard to the 

streamlines: the flow does not involve vortices. 

From assumption (i) the streamfunction H is known and may be expressed in terms of the 
known velocity profile at zo, as 

We denote by x i  the cylindrical co-ordinates in D: 

xl=r, xz=e, x3=z; (7) 

and < j  is the system of variables defined as 

in a domain D, . 
We can thus define a one-to-one transformation t'(x') between a physical domain D and a 

transformed domain D, such that the transformed streamline (9) from the original streamline 
( L )  in D, is rectilinear and parallel to the axis of symmetry of D (Figure 1). The transformation 

I 
I 

20 

I 
I 

z1 

Figure 1. The stream tube method transformation of a physical domain D into D, 
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<’(xi) is expressed by the equations 

r = f ( R ,  Z ) ,  e=o, z=z, (9) 
with the initial conditions 

= f ( r ,  zo) = R, e = o, z o = z , .  (10) 
As shown in Figure 1, the transformed domain D, is a cylinder of radius ro of generants parallel 

Since the transformed streamlines are parallel straight lines, a transformed streamfunction H * 
to the axis of symmetry of D (and Dl). 

may be defined as 

The transformed streamfunction H* is constant and known on every streamline (9,) of the 
mapped domain D,. The relevant system of variables has similarities with the Protean system 
co-ordinates Y’ as introduced and used by Duda and Vrentas14 and Adachi.15 In this system one 
co-ordinate is the streamfunction H ( r ,  z )  such that 

H*(R)=H(r,  zo), r = R .  (1 1) 

Y1 = H ( r ,  z), Y’2=0, Y3=1. (12) 
A recent work of Papanastasiou et ~ 1 . ’ ~  has involved this Protean system in the computation of 

The derivatives in terms of r and z are written as 
flows of fluids with memory, notably for the evaluation of kinematic tensors. 

The Jacobian of the transformation is 

J *  is non-singular in the absence of secondary flows. Upon this condition, the velocity com- 
ponents u, and u, become, from (12), 

-1 
up= - -” H*‘(R),  u,= __ H*’(R). 

ffR ffx 
From equation (15) the incompressibility condition or continuity equation (1) is readily veri- 

fied. This formulation allows us to consider only the momentum conservation equation 

where F, denotes the body force vector, p is the fluid density and D/Dt is the material derivative. 
a, the total stress tensor, is often broken into a separate isotropic component -PI, where p is the 
pressure and I the ideatity tensor, and a rheological tensor component T: 

C =  -pI+T. (17) 
Using the velocities in terms of the new variables R and Z (equation(15)) and the explicit 

expression of T, the momentum equations can be written as a non-linear set of differential 
equations 

These equations involve derivative terms of the unknowns f and p to be determined numerically. 
Fl ( J  P) = 0, F 2 ( J  P) = 0. (18) 
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3. PROBLEM FORMULATION FOR VORTEX FLOWS 

These flows can be encountered either separately (Figure 2) or as subdomains in more general 
flow situations (secondary flows) as shown in Figures 3(a) and 3(b). It is now necessary to present 
the assumptions and analysis for an incompressible circulatory plane flow in a physical domain 
D. The velocity vector is given by (2). Assuming that secondary eddies as shown in Figure4 
are avoided, there exists only one stagnation point in the flow domain. Using the Cartesian 
co-ordinates 

x1 =x, x2 = y, x3=z (19) 

51=R,  t2=y, t3=4, (20) 

and new variables defined as 

it is possible to define a one-to-one transformation tj(x') between a physical domain D (involving 
one stagnation point C in the 'central' region) (Figure 5) by writing the following equations: 

x =a + RI(R ,  4 )  sin 4, y =  y, z=b+RA(R,  4)cos4. (21) 

The function I ( R ,  4 )  is unknown. The variables (R, 4 )  are related to the transformed domain 
D, of Figure 5. The triplet (a, y, b) involves the co-ordinates of the transformed point C ,  of the 
single stagnation point C of the physical domain. The point C ,  is the centre of concentric circles 
(9) which are mapped streamlines of the lines (L)  of the physical domain D. The transformed 
function K *  of the streamfunction K(x, z) is constant along the lines (9) and consequently 
depends only on the variable R. It should be pointed out that in the description of plane vortex 
flows there exists a priori no particular upstream section as featured in non-circulatory plane or 
axisymmetric flows. Hence the Jacobian J* of the transformation xi(lj) is given by 

streamlines 

Figure 2. Domain of a purely circulating flow (vortex flow) 
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Figure 3. (a) Secondary flows of a polymer through an orifice. The mean velocity is 0.4 ms-'  (the orifice diameter is 
0.5 mm). Courtesy of Prof. J. M. Piau, Institut de MCcanique de Grenoble; (b) Secondary flows of a polymer involving 
two vortices. The mean velocity is 1.8 ms-'  (the orifice diameter is 05mm). Courtesy of Prof. J. M. Piau, Institut de 

Mtcanique de Grenoble 
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From (21) 

stream1 i nes 

Figure 4. Multiple eddies (flow in a cavity domain) 

I" 
original  
streamlines 

I 

transformed 
streamlines 

Figure 5. Transformation of the physical domain D into D, for a circulating flow 

the derivative operators in terms of x and z may be written for R # 0, A # 0 

a 
R(Abcos4-lsin4) - + ( A c o s ~ + R l X c o s ~ )  

a 
R(Aksin4 +Aces+) - -(Asin 4 + RAXsin4) 

aR 
- a 

a 
az R I ( I + R L X )  

_ -  
ax RA(A+RAk) 

aR 
- _ -  

as follows: 

(23) 
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The expressions of the two velocity components u and w thus become 

K*'(R),  
&sin 4 - lsin 4 

A(I + RIX) 

&sin 4 + lcos 4 
1(1 + RIX) 

U =  

K*'(R).  W =  

From (25) and (26), mass conservation is readily verified. As in the former case, the use of (25) 
and (26) and the choice of a Newtonian of non-Newtonian constitutive equation in the dynamic 
equations (16) lead to a non-linear set of differential equations of unknowns I and p: 

G I V ,  PI=& G2 (I, P) = 0. (27) 

The spatial variables are R and 4. 
Unlike the computational domain involving rectilinear streamlines, the streamfunction K ( x ,  z) 

and its transform K * ( R )  are unknowns and must be computed with the unknown transformation 
I ( R ,  4) and the pressure p(R, 4). 

4. BOUNDARY CONDITIONS IN THE STREAM TUBE METHOD 

In the present analysis the boundary conditions are related to the unknown transformation f or I 
and the pressure p. It can be easily understood that since the computational domain is simpler 
than the original flow domain D, the resulting equations (18) and (27) which involve the unknown 
functions f or l and p are more complicated than those written with the original variables of the 
physical domain. Moreover, the method involves the description of flow by streamlines. Slight 
changes of streamlines may lead to considerable modification of velocities and stresses induced by 
the computation of kinematic gradients (such as the rate-of-deformation tensors and the 
Cauchy-Green tensors which are used in the expression of constitutive equations l7 ). Approxim- 
ate numerical solutions of the equations must be obtained by means of efficient and reliable 
computational methods. Before dealing with this point, it is necessary to consider the boundary 
conditions to be used with the non-linear equations (18) and (27). 

4.1. Non-circulatory Jlows 

In this case the transformed streamlines are rectilinear and the flow domain D is generally 
located between two fully developed regions. The duct is assumed to be of constant diameter 
upstream and downstream of sections zo and z1 respectively. The entrance and exit Poiseuille 
velocity profiles can be computed analytically (in the Newtonian case for instance) or numerically 
for more complicated constitutive equations. In such situations Clermont and de la Landel* have 
shown that the computation of flow in D, is possible for a simply connected geometry by 
considering successive stream bands limited by two transformed streamlines, from the wall to the 
'central' region of the flow, provided the action of the complementary domain is considered 
(Figure 6). In axisymmetric flows the forces exerted on the removed part are considered by writing 
the following appropriate equation: 

where aBi, denotes the closed surface which limits the complementary domain and n is the outer 
normal vector to the surface. The total stress tensor Q involves the pressure p (equation (17)) and 
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Bi c 

Figure 6. Stream tube Bi and its complementary domain Bi, in D. Transformed subdomains B; and qc in D, 

the derivatives of the velocity. The components a, and a, of the unit normal vector n are 

Knowing the entrance and exit velocity profiles, a single value <, corresponds to a value go at 
zo at section zi. The function f is known at the wall and must verify the integrodifferential 
equation (28) for an unknown line (L i )  which limits the subdomain Bi .  The pressure distribution 
at the upstream section zo is known provided a pressure value is assigned at the wall point 

The equations of the problem involve the dynamic equations (18) and the boundary equa- 
tion(28). Stream tube analysis enables us to compute the flow field in a simply connected 
geometry by considering subdomains of the entire domain, thus allowing us to limit the storage 
area and CPU time. 

In the case of doubly connected geometries as shown, for example, in Figure 7, the use of the 
boundary condition (28) for the complementary domain Bi, implies the computation of unknown 
stresses at the inner wall S,. Thus the flow field cannot be determined by computation of 
successive stream bands in D,. Consideration of the entire domain D, may be an alternative 
solution. 

B(r0 9 zo ). 
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D 

outer 

. . . . . - . 
Bi  B i c  wall 

Figure 7. Doubly connected geometry 

4.2. Circulatory flows 

The transformed domain D, of Figure 5 involves circular streamlines described with co- 
ordinates R and 2. No additional forces are to be involved when considering a peripheral ‘stream 
ring’ limited by a-known streamline (9) and an unknown streamline ( Yi). An equation of the 
type (27) is not necessary and only the dynamic equations are to be written. The flow can be 
computed in successive stream rings from the wall to the stagnation point. 

The case of a doubly connected flow domain is illustrated in Figure 8. The geometry is that of a 
journal bearing. The fluid is contained between the two cylinders. The inner one rotates at a 
constant velocity w. When considering a stream ring in the transformed domain D,, the rotation 
of the inner wall produces an action to be involved in the equations and the former procedure 
cannot be applied. 

5. APPLICATION TO NDN-CIRCULATING FLOWS: THE NEWTONIAN CASE 

In the following we investigate the flow of a Newtonian fluid in a converging geometry (Figure 1). 
The cone angle u of the convergent is small enough to avoid recirculations. 

5.1. Dynamic and boundary equations for a Newtonian fluid 

We consider the case of a Newtonian constitutive equation 

T = 2p9,  

where 9 denotes the rate-of-deformation tensor and p is the viscosity. 
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+ 
38 1 

r i n g  Ri 

r i n g  R Q i  

Figure 8. Mapping of the flow domain of a journal bearing 

The components of the tensor 9 may be expressed from (13) and (15) in terms of the variables 
(R,  Z )  or from (23)-(26) in terms of (R, $). Let us consider a non-circulating flow in the 
axisymmetric converging geometry shown in Figure 1. Two Poiseuille flows are considered at zo 
and z1 corresponding to the following equations for the velocity: 

ur(r,zo)=O, u,(r,zo)=clo(r~-r2), ur(r,z,)=O, uz(r,zl)=al(r:-rz),  (31) 

where the relation between a. and a1 is 

aor:= ulr : .  (32) 
From equations (12) the dynamic equations (15) in cylindrical co-ordinates are expressed as 
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The superscripts 1 and 3 which are used for the tensor components are related to the cylindrical 
co-ordinates r and z respectively. The detailed expressions of (33) and (34) in terms of fand p have 
been given in a previous paper.” Only the general form is presented here as 

an 
- f ’fi + A, H*’(R)  + A,H*” (R)  + A3 H *”’(R)=O, (35) 

in terms of the variables f and n, with 

The derivatives H*’, H*” and H*”’ are known quantities and A,, A,, A 3 ,  B,, B, and B3 denote 
functions of derivatives off: 

l-l =PIP. (37) 

The streamfunction H * is computed from equations (4) and (10). Hence 

a0 

4 
H * ( R ) =  - (R4-2RgR2) .  

The non-linear system of dynamical equations is to be used together with the boundary condition 
(28) and boundary values related to f and n. 

Owing to the symmetry of the flow, the vector equation (28) is reduced to 

(39) 

We now consider the particular points B,* and DZ in the physical domain D of Figure 6. 
From (38) we obtain for a Newtonian fluid 

This integrodifferential equation involves unknowns f and ll on the streamline Y1 which is to 
be determined. Concerning the unknowns of the problem, it should be pointed out that: the 
function f is known at the wall and at sections zo and 2 , ;  the pressure pis given only at section zo. 

Now we wish to compute the flow field by considering successive stream bands in the mapped 
domain D , .  

In this paper we will only present the computational analysis and the results for the first band 
limited by the transformed wall 9 b and the first line 9;, the transformed curve of which is to be 
computed (see Figure 6). 

It has been shown”, that the difficulties have mainly concerned the computation off and p 
in the first band Bb, particularly owing to the fact that the pressure p is unknown at the wall 9;. 
The procedure can be readily extended to the successive stream bands in D ,  . 

Two points are to be investigated: the discretization of the unknowns on a stream band in D,;  
the computational method to be applied for the numerical determination of the unknowns 
f and p. 
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5.2. Discretization; computational methods 

The peripheral stream band Bb in D, involves the transformed wall 9; and the line 9; related 
to the unknown streamline 9, of D. We consider N elements AiBiCiDi  in Bb, from Z,=z ,  to 
Z ,  = z l ,  as shown in Figure 9. On each element (i) of Bb the unknowns f and p at a point M are 
assumed to be expressed in terms of second-order polynomials of R and 2 as 

fM =fBt + ( R M  - R ~ ) x  + (2, - ZB,) x i  + ( R M  - RBI)' X; + (2, - ZBr)' X: 

+ ( R ,  - RBt)(ZM - ZBi)x), 

+ (RM - RBg)(z, - zBr)xilo 

(41) 

(42) 

p M  =pBt + (RM-RBI)x~ + ( Z M -  Z ~ ) X ' ,  + ( R M -  RE{)' X$ + (ZM - ZBi) '  X: 

where (R,, Z,) and (ItB,, Z B r )  are co-ordinates of points M and B' respectively in the element (i). 
The superscript i indicates an element (i), for which 10 unknowns are involved. Additional 
compatibility equations are written to complete the set of differential equations (35), (36) and 
boundary condition (40). 

We then obtain a closed non-linear system of 10N equations of the form 

4(4 = 0, (43) 
where n = 10N and ~ ( X ) = ( & ( X ) ,  . . . , $,,(x)) is twice continuously differentiable from R" to R". 
Here the Jacobian J ( x )  of 4(x) is non-singular. It is clear that the non-linear equation(43) is 
equivalent to the following non-linear least squares problem: 

n 
I)(.)=$ 1 4 i ( ~ ) 2 : ~ ~ R n  

i =  1 

By simple calculus we obtain 

I 

Figure 9. Elements in the computational domain 
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The Newton-Raphson method was applied first to the dynamic equations. A limit of 
convergence was obtained for a cone angle of the convergent a* = 29" 3. This procedure has led to 
the definition of an optimal mesh in the computational domain. The elements are trapezoidal and 
their optimal shape, shown in Figure 9, is consistent with the current results obtained in grid 
generation techniques. The same grid is retained for the further numerical experiments. 

In order to obtain solutions beyond the angle a* given by the Newton algorithm, we now 
consider the computational problem of determining the unknowns f and p by using the trust- 
region (TR) optimization algorithm.. 

6. TRUST-REGION METHOD IN UNCONSTRAINED MINIMIZATION 

Let us consider the unconstrained problem ( P ) :  

( P ) :  min { $(x) :  x E R"}, (47) 
where t,b is a function from R" to R. In this section we wish to describe and analyse a technique 
related to the solution of (47). 

The approach we shall present is well k n ~ w n . ' ~ - ~ '  It is appropriately called a 'model trust- 
region approach': the step to a new iterate is obtained by minimizing a local quadratic model to 
the objective function over a restricted spherical region centred about the current iterate. The 
diameter of this region is expanded and contracted in a controlled way based upon how well the 
local model predicts the behaviour of the objective function. It will be seen that it is possible to 
control the iteration in such a way that convergence is forced from any starting value assuming 
reasonable conditions on the objective function. 

Some very strong convergence properties for this method will be given. It will be shown that 
one can expect (but not ensure) that the iteration will converge to a point which satisfies the 
second-order necessary conditions for a minimum. 

The trust-region method computes the sequence of iterates by solving at each step a quadratic 
problem (Pk) with a Euclidean norm constraint: 

where qk is a quadratic approximation of the variation of + at xk defined by 

gk is the gradient of the function + at xk and H ,  is the Hessian of t+b at xk or an approximation of it, 
which therefore will be called 'quasi-Hessian'. The strictly positive number 8k is called the 'trust 
radius'. 

In trust-region algorithms it is necessary to compute the gradient of the objective function. The 
use of first-order information leads in general to the first-order stationary point. By incorporating 
the second-order information H ,  = V't+b(xk), these algorithms may satisfy the second-order 
necessary conditions for the problem (P) of (47). In this case the trust-region method can be 
regarded as a modified Newton method applied to finding a zero gradient of the objective 
function. The procedure can be described as follows. 

Computing the direction d k ,  the solution of (Pk), we can easily check the quality of the local 
approximation 4k.d) and hence take the appropriate decision. 

(a) If the approximation is satisfactory, then the solution of (Pk)  yields a new iterate; in 
addition, the trust radius is increased. 
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(b) In the opposite case the iterate is unchanged; in addition, the trust radius is decreased until 
4 k  yields a satisfactory approximation inside the trust region (which necessarily occurs for 
small radii since the gradient is supposed to be exactly known and the first-order term in 4, 
becomes dominant if 11 g, 11 ZO). 

The quality of the approximation is generally examined through the following quantity: 

Here rk is called the ‘quality coefficient’ and represents the ratio of the actual reduction of + when 
moving from xk  to x, + d, and the predicted reduction according to the quadratic approximation. 
Thus in a trust-region algorithm the main source of computation effort, apart from the function 
evaluation required, is the work on a problem of the form (Pk) of (48) to determine the step from 
the current iterate. A practical aspect of this procedure is given in the following example 
illustrated in Figure 10. 

Let x, be the initial iterate of the sequence (x,} and 6 ,  be the corresponding trust-region radius 
of the sphere (or R”) of centre xo (Figure 10). 

Step 1. The algorithm leads to an admissible approximation xo + d* (by using the coefficient r, 
of (50)). Then a new iterate x,#x, is updated and the trust radius 6, may be 
increased: 

6, >do. 

Step 2. The approximation x1 +d* is not satisfactory and the iterate remains unchanged 

x2=x1. 

Then the trust radius d2 of the sphere of centre x2 is reduced: 

The next steps k of the algorithm lead to determination of the position of x, and the 
corresponding radius 6, until convergence is obtained. 

Figure 10. An illustrative example for the trust-region method 
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It should be pointed out that trust-region algorithms differ in their strategies for approximately 
solving (Pk) (see Section 6.1). 

6.1. Algorithms for problems ( P )  and (LP) 

following algorithm. 
Bearing in mind the general procedure for solving the problem (48), we shall be applying the 

ALGl 

1. Let X,E R”, 6,>0 and H, be given. 
2. For k=O, 1, 2 , .  . . 

(a) Compute gk=V$(Xk); if gk=O, xk will be taken as an optimal solution. Stop! (see 

(b) Determine a solution dk to problem (Pk) and compute the quality coefficient rk via (46). 
(c) Update the iterate. 
(d) Update the trust radius and the quasi-Hessian and go to step 2. 

Section 6.3). 

Points (a), (b) and (c) of the above abstract algorithm are discussed in Appendix I and are 

The local problem (LP) involved by ALGl is reduced to that of minimizing a quadratic form 
closely related to the work of Gay,*j Sorensen,20 Mark" and Dennis and S ~ h n a b e l . ~ ~  

inside a sphere: 
(LP): min{(g,d)+i<d,Hd): lldll I S } ,  (51) 

where g is a n-vector, H is a symmetric matrix and 6 is a positive number. 
Since the constraint set {d E R”: 11 d 11 5 6 )  is compact, the problem (LP) has a solution. If in 

addition H is positive definite, then there is unicity of solution to (LP). 
A complete discussion of the theoretical aspects of the problem (LP) of (51) and the nature of 

the computational difficulties that may be encountered are presented in Appendix 11. Some of the 
results are known (see e.g. References 20-24). A statement and proof of these results that is more 
complete and better suited to this presentation are given. 

Two algorithms related to the local problem (LP) are detailed in Appendix 111. The first is the 
Hebden algorithm and is generally applied when H is positive semidefinite. The second algorithm 
uses curvature information and is carried out to deal with ‘hard cases’ (see 2(i) and 3(ii).in 
Lemma 2 of Appendix 11). In this algorithm the computation of the smallest eigenvalue 1, of H 
and of an eigenvector of H corresponding to A1 is required. 

6.2. Convergence tests 

We can use the following termination criteria in trust-region algorithms. 

First-order necessary condition test. If vt&k) = 0, then stop. 

Second-order suflcient condition. When the first-order necessary condition is satisfied, we can 

(i) If Hk is not positive definite, then the algorithm continues (see Lemma 3 of Appendix I1 for 

(ii) If v2$(xk) is positive definite, then stop. Otherwise H,=V2#(Xk) and we restart the 

The convergence results of the TR method are given in Appendix IV. 

stop the algorithm or proceed to verify the second-order sufficient condition as follows. 

the solution of (LP) in the case where g=O). 

algorithm from step (d) (of ALGI). 
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6.3. Adapted TR algorithm 

In this subsection we will present the practical TR-based algorithm applied in our experiments. 

ALG2 

0. Initialization: 
x(O), the initial iterate 
do > 0, initial trust radius 
E > 0, ‘zero’ for general tests 
E, > 0, zero for )I g 11 
E*>O, zero for II/ 
k = 0, iteration counter. 

1. Calculating II/k = $(dk)), gk= VII/(dk)) and Hk, the Gauss-Newton approximation of 

2. If II gk I( I E ~  or + k ~ % ,  then x(,) is out solution; stop. 
3. Calculating d,: 

V Z + ( x k )  (Hk = J ( x ( ~ ) ) ~ J ( x ( ~ ) )  (see (46)), which is positive definite in our problem). 

Solve H k d =  - g k  

if(lld)116k) then d k = d  
else using Hebden algorithm to find a p > O  so that the solution of ( H , + p l ) d =  -gk 
satisfies I )I d )I - ijk I <&, then d k  = d. 

4. Calculating 6k+ and x k +  : 
let = “Y ( X k )  - y ( x k  + dk)l / [qk(O) - qk(dk)l 
if rk 2 0.25, then 
begin 

X ( f + l ) -  - X  ( f )  + d k  

if rk20.75,  then dk+l=26r, 
else 6 k + l  =6k 
k =  k +  1 and return to step 1 

end 
else (if r, < 0.25) 
6k=6k/2 and return to step 3. 

7 .  COMPUTATION IN CONVERGING GEOMETRIES RESULTS AND DISCUSSION 

In order to test and validate the general behaviour of the proposed mathematical model, various 
numerical experiments were performed. The TR algorithm was first applied to a Poiseuille flow 
problem. The transformation is the identity and the pressure variation is linear versus z (or 2). 
The derivatives of the streamfunction H* are computed from (38). 

A DN 4000 Apollo workstation was used in all our tests. Double-precision variables were 
considered. The first aim was to compare the TR technique and the Newton-Raphson method in 
the Poiseuille flow problem from the points of view of robustness and accuracy. 

According to the numerical results, the accuracy of the two methods was found to be 
equivalent. In order to test the efficiency of the algorithms, we started from a perturbation of 5% 
for the unknowns (xi), n =  1, . . . , N ,  related to the elements of the peripheral stream band Bo. 
A divergence of the Newton-Raphson method was observed while the TR algorithm still 
converged to the analytical Poiseuille solution. 

For converging geometries of angle c1 >O we adopted as computational domain the peripheral 
stream band B, of the mapped domain D, (Figure 9). Given a converging angle a, the flow field 
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0.5.. 

was computed using as initial estimate xo, the solution vector x that had been computed for an 
angle a' < Q, such that 

a = a - a' > 0. (52) 

Using the Newton-Raphson procedure, the distance a was always chosen to be smaller than 5". 
This distance had to be strongly reduced for angles ci close to a* = 29"3, which is the limit angle of 
convergence for the method. 

In the context of the TR algorithm the numerical results were determined for distances a of the 
order of 10". For a<a* the numerical data were found to be identical to those given by the 
Newton-Raphson method. Moreover, convergence was still obtained for angles greater than Q*. 

In Figure 11 we give, versus z, the evolution of the computed streamline (9,) of the peripheral 
stream band B,, the dimensionless pressure p /po  and the dimensionless axial component of the 

10" 

PIP0 

0.0 0.8 

Figure 11. Computed streamline, dimensionless pressure p / p ,  and velocity u/uo on the streamline versus the dimen- 
sionless abscissa (z  -z,)/R, for an axisymmetric converging flow of angle a = lo" (Newton-Raphson and TR algorithm) 
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velocity u/uo on the streamline, where uo denotes the velocity at z=zo .  The cone angle is lo". The 
numerical results of the two methods are found to be identical. 

Figure 12 shows the computed streamline of B,, the pressure distribution and the velocity on 
the streamline for a cone angle ct = 45" determined with the TR method. 

In Figure 13 are shown the evolutions of the computed streamline (dpl) and the corresponding 
pressure, versus a dimensionless axial distance, for a=4o", 50" and 55". 

A divergence of the TR algorithm is found for a cone angle ct=60". This failure of the 
computational method applied to a converging flow situation is to be analysed from both 
theoretical and physical points of view. As outlined in Section 2, one main assumption for the 

0.8 0.0 

0.0 0.8 

Figure 12. Computed streamline, dimensionless pressure p/p, and velocity u/uo on the streamline versus the dimen- 
sionless abscissa (z--z,)/R, for an axisymmetric converging flow of angle or=45" computed with the TR algorithm 
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Figure 13. Evolutions of the (a) computed streamline and (b) pressure for different angles of the converging geometry 

applicability of the stream tube method concerns the non-existence of secondary flows; otherwise 
the Jacobian of the transformationfk (equation (14)) vanishes and a circulatory flow can exist. An 
interesting point was to test the robustness of the TR algorithm in relation to the appearance of 
secondary flows. According to general experimental data, flows in converging geometries usually 
exhibit vortices for angles a260" (given a contraction ratio of the upstream and downstream 
diameters). We wanted to compare our numerical results with those given using the fluid flow 



FLOW ANALYSIS BY THE STREAM TUBE METHOD 391 

analysis software package POLYFLOW of Professor Crochet (a Fortran finite element pro- 
gram for calculating viscous flow; Universitk Catholique de Louvain, Louvain-La-Neuve, 
Belgium) in the same flow conditions as those of the TR procedure. The POLYFLOW code 
indicated a limit angle cr=61", which is very close to the result (a=60") given by the TR 
algorithm. 

8. CONCLUSIONS 

In this paper we have presented a new method for the analysis of incompressible plane or 
axisymmetric flows. The stream tube method enables us to consider non-circulatory flows as well 
as pure vortex flows by using a mapped domain of computation where the mapped streamlines 
are parallel straight lines or concentric circles. Under certain assumptions this method permits us 
to compute the flow field by considering successive stream bands or rings in the computational 
domain, as done here for axisymmetric converging flows. Such a procedure leads to a reduction in 
computing time and storage area. The trust-region algorithm was used in order to determine the 
unknowns related to non-linear equations in the case of axisymmetric converging flows. The limit 
angle c1 for convergence indicated by the TR method is directly connected to the appearance of 
secondary flows. This interesting result gives consistency to our analysis and to the efficiency of 
the TR method. 

Work will be continued towards the computation of flows of fluids obeying other constitutive 
equations such as integral models and the consideration of purely circulating flows such as the 
journal bearing geometry. 

APPENDIX I 

The computing TR (trust-region) iteration must involve the following steps. 

IS. Update of the trust radius 

The trust radius is updated according to the following rule. 
Let 0 < p < q < 1 and 0 < y1 < y z  < 1 < y 3  be specified constants. 

1. If r k < f l ,  then d k + 1 = A E [ y 1 6 k , Y Z d k ] .  

2* If r k s q ,  then 6 k + l E h Z 6 k , 6 k 1 ;  d k + 1 E [ d k , Y 3 6 k ] -  

1.2. Update of the iterate 

In the trust-region method the updating of the iterate is usually governed by a parameter s such 
that 0 < s 50.25, which must be kept constant throughout the iteration. The rule is the following. 

1. If rk<s ,  then x k + l = x k .  

2. If r k 2 . 5 ,  then = x k + d k .  

Note that a significant decrease of the function is demanded to allow the algorithm to move 
from x k  to X k + d k .  

1.3. Update of the quasi-Hessian Hk 

In this subsection we propose two algorithms for updating H k .  
Suppose y k = v $ ( x k + l ) - v $ ( x k ) ,  S k = x k + ,  - x k  and H, has been initialized as a symmetric 

matrix. 
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(ii) Formula of-rank 2 

Hk + 1 = H k  + akuku: + b k v k v : ,  

where 

ak= l / S : y k ,  U k = Y k ,  (57) 

B k =  - l l / s : H k s k ,  V k  = Hksk. (58) 

It has been that if t+b is quadratic and A=V2t+b(x) is positive definite, then H k  
calculated by the above formula converges to Vz +(x*). 

APPENDIX I1 

Here our purpose is to give a complete discussion of the theoretical aspects of problem (LP) 
of (5 1 ) :  

min{(g,d)+i(d, H d ) :  I l d l l S d } .  (W 
We begin with the following main result (which is the basis of the trust-region algorithm) due to 
Gayz3 and Sorensen” in a more simplified form. 

Theorem 1 

d* is a solution to (LP) if and only if there is p 2 0  such that 

(i) H + pZ is positive semidefinite 
(ii) ( H + p l ) d * =  -g 
(iii) 11 d* 11 s 6 and p( 11 d* 11 - 6)  = 0. 

Such a p is unique. 

P r o o f :  It is clear that (i) and (ii) are the Kuhn-Tucker conditions which are necessary for 
optimality in (LP) (see e.g. Reference 28). Moreover, if A is itself positive semidefinite, then (LP) is 
a convex optimization problem. In this case (i) is always verified and Theorem 1 is known. Now 
let d* satisfy (i) and (iii). By simple calculus using (ii) we obtain 

q(d)= gTd+$dTAd=q(d*) - (p /2 ) [dTd-d*Td*]  +$(d-d*)T( H +pZ)(d-d*). (59) 

Necessity. Let d* be a solution to (LP); then ( 1 )  implies 

( d - d * ) T ( H + p l ) ( d - d * ) 2 p [ d T d - d * T d * ]  for d such that Jldll16. (60) 
If d * = 0 ,  then g = O  and we have min{+dTHd: Ildll IS} =O. In other words, H is positive 
semidefinite. If follows that H + p1 is positive semidefinite for all p 2 0. 
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Now assume that d* is non-null; then we have 

( d  - d * ) T ( H  + @ ) ( d  - d * )  20 Vd, d T d = d * T d * .  (61) 

p T ( H + p Z ) p r O  Vp, pTd*#O. (62) 

This is equivalent to 

Using the continuity of the quadratic form, we can conclude that p T ( H + p Z ) p L O ,  Vp.  

SufJiciency. Let d* verify the three conditions in Theorem 1. If 11 d* 11 I 6, then (iii) implies that 
p = O  and d*  is a solution to (LP) according to (59). If IId* 11 =6, then (59) implies that d* is a 
solution to (LP) because dTd<d*Td* for every d such that lldll r 6  and H+pZ is positive 
semidefinite. 

The uniqueness of p will be proved in Lemma 3. 
As an immediate consequence of Theorem 1 we obtain the following (unusual) complete 

characterization of the solution to (LP). 
The solution of (LP) is straightforward if (LP) has no solution on the boundary of 

{ d E R": 11 d 11 I S } .  In fact (LP) has no solution d with 11 d 11 = 6 if and only if H is positive definite 
and 1IH-'gll<6. The non-negative scalar p in Theorem 1 is called the Lagrange multiplier 
associated with the constraint ( d ,  d )  16'. 

It is worth noting that (LP) represents an interesting case of a non-convex optimization 
problem whose complete characterization of solution can be pointed out. 

Now let us define the function 4 on { p E R: H + pZ non-singular} by 

where d ( p )  is a solution of ( H + p Z ) d =  -9. 
Denote by I ,  I A' I . . . I An the eigenvalues of H and by u l ,  u2, . . . , u, their corresponding 

eigenvectors. We denote M (  H - A1 I )  the null space of H - A, I (or the eigenspace relative to A,) 
and J,={i: Ai=lw,}. 

It is clear that the solution of problem (LP) is closely related to the non-linear equation 4 ( p )  = 6 
for p in ] - A l  , + a[. More precisely, this is the case where (LP) has a solution on the boundary of 
its constraint set and there is p >  max(0, -Al) in Theorem 1. In this case the Hebden algorithm 
(which is presented in Appendix 111) is known to be reliable and efficient for solving 4 ( p )  - 6 = 0. 

The so-called 'hard case' corresponds to the situation where the coefficient p in Theorem 1 must 
be equal to - A,. 

Let us consider now the solution of the equation 

( H + p Z ) d =  -g  for pc2 -A1, (64) 
using the eigensystem of H. We find that if p > - A l ,  then the solution to (64) is defined by 

-uTg 

I i + P  
uTd=- for i = l , .  . . ,n. 

Therefore 

The function +(p) is positive and strictly decreasing in 3 - 4 ,  -I- a[, with limp4m4(p)=O; then 
the equation 4(p)= 6 has at most one solution in this interval. 
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Lemma I 

1. If g is perpendicular to N(H- I, Z), then problem (64) with p ~ 2  - A ,  always has a solution. 
2. Problem (3) with p= -1, has a solution if and only if g is perpendicular to N ( H - L 1 Z ) .  

Moreover the solution set to problem (64) with p= - I ,  is d* + N ( H + p Z ) ,  where d* is 
defined bv 

if i c J l ,  
- uTg/(lli + p )  otherwise. 

uTd* = 

Proof: It suffices to prove statement 2. If p = - I , ,  then the range of H + pZ is Lin(u,: i # J, ] 
which is equal to J V ( H - A ~ Z ) ~ .  Statement 2 is then immediate. 

It can be verified that d* is a solution to (64) with p= - I , .  It follows that the solution set of 
problem (64) is d * + N ( H - l , Z ) .  Because d * E N ( H - I I Z ) l ,  d* is a solution of minimum norm 
to problem (64) with p =  -1,: 

((d*(I=min{ ( ( d l ( : d € d * + M ( H - I I I ) } .  

In terms of the pseudo-inverse 29i30 we can write d*= - ( H - L , Z ) + g .  

ing the algorithm described for solving (LP). 
The following results (which are a consequence of the previous ones) are helpful in understand- 

Lemma 2 

Assume that the matrix H is non-null. 

(1) If the vector g is different from zero, then the function 4(p) is positive and strictly 

(2) If g is not perpendicular to N ( H - d , Z ) ,  then 
decreasing in 3 - 4 ,  +a[, with lim,,+m4(p)=0. 

(3) If g is perpendicular to N ( H - A I Z ) ,  then 

In this case $ ( p )  can be continuously prolonged at -1, by setting 

Proof: This is immediate from the expression of d ( p )  in (66) and Lemma 1. 

Remark 

most negative curvature method in Appendix 111). 
In the construction of an algorithm for solving (LP), Lemma 2 will be used as follows (see the 
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(1) For any fixed number 6 > 0, if we cannot find an E > 0 sufficiently small (by the dichotomy 
technique, for example) such that #( - A, + E )  2 6, then g is perpendicular to N ( H  - I, I). 

(2) If g is perpendicular to N ( H - A , Z ) ,  then for E' sufficiently small, d ( - A ,  + E ' )  

and #( - I ,  + E ' )  represent acceptable approximations of -(H - I, I ) + b  and 
~ ~ ( H - A , Z ) + g  11 respectively. 

In this way we avoid the expensive computation of (H-A,Z)+ b in the hard case. 

Lemma 3 

Suppose that gfO in (LP) (see Lemma 4 for the case g=O). 

1. If I, > O  (i.e. H is positive definite), then 

(i) if llH-lgll 5 6 ,  then d =  -H-'g is the only solution to (LP) ( p = O  in Theorem 1 and 

(ii) otherwise 1 )  H -  g 1 1  > 6 and #(O) - 6 = 11 d(0)  11 - 6 > 0, therefore there is a unique solution 
#(PI - 6 = II d(P) II - 6 10) 

p > o  to # ( p ) = 6 .  

2. If A, =O (i.e. H is only positive semidefinite), then 

(i) if ll(H-AlZ)+gll<6 and(H-I,Z)(H-A,Z)+g=g(thisequalityoccurs ifandonlyifg 
is perpendicular to N ( H - I I Z )  according to Lemma l), then 

{ ~ E R " :  d =  -(H-I, l)+g+u, U E N ( H - A ~ Z )  

and 11 d 11 = 1 )  ( H  - I ,  1)' g 11 + 1 )  u 11' I d2} is the solution set to problem (LP) and p = 0 is 
the only non-negative number which satisfies Theorem 1 (see Lemma 2). 

(ii) otherwise II(H-A,Z)+gll > 6  or (H-A,Z)(H-I,Z)+g#g, then # ( p ) - S = O  admits the 
unique solution p* in ] - I , ,  + co[ and p* is the only non-negative number which 
satisfies Theorem 1 (see Lemma 2). 

3. If I, <O,  then 

(i) if ll(H-I,Z)+gIl 16 and (H-A,I)(H-A,Z)+g=g (this equality occurs if and onlyif g 
is perpendicular to N ( H - I , Z )  according to Lemma l), then 

{ d E R " :  d =  -(H-A,I)+g+u, u E N ( H - I , Z )  

and I ld l lZ=II(H- l , l )+g112+II~112=62}  is the solution set to problem (LP) and 
p* = - A ,  is the only non-negative number which satisfies Theorem 1 (see Lemma 2). 

(ii) otherwise II(H-A,Z)+gll > 6  or(H-A,Z)(H-A,Z)+g#g, then 4(p)-6=0admits the 
unique solution p* in ] - I , ,  + co[ and p* is the only non-negative number which 
satisfies Theorem 1 (see Lemma 2). 

4. If I, 10 (i.e. the quadratic function q ( d )  is concave), then (LP) has only one solution on the 
boundary of { d: 11 d 11 I d }  unless g and H are null.31 

(i) if A, =0, then H=O. In this case the solution set of (LP) is 

{ - (9/ II 9 I1 16 1 if 9 z 0, (d :  11 d I( IS} if g =O (see also Lemma 4). 

(ii) if A1 <O, then we apply the same results as in statement 3. 

The situation where g = 0 in (LP) is closely related to the variational spectral theory.29 
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Lemma 4 

If g=O in problem (LP), then the solution set of (LP) is 

(0) if Il >O, 
{ ~ E J V ( H - A ~ Z ) :  Ild11~6) if &=O, 
{ ~ E N ( H - A ~ Z ) :  lldll =S} if 1,<0. 

Proof: We can use the results above or those concerning variational properties of the spectral 
theory.29 

APPENDIX 111: ALGORITHMS FOR SOLVING THE LOCAL QUADRATIC PROBLEM 
(LP) 

III.1. Hebden algorithm 

linear equation 4 ( p )  - 6 = 0, with 
Let us describe now this algorithm for the solution of problem (LP) in the case where the non- 

admits a unique root in ]-A1, +a[. 

presented in Appendix 11, i.e. 
( H + p Z ) d =  - g  for p ~ 2  -Al, 

the fact which should be taken into account is that the function 4 ’ ( p )  is a rational function in p 
with second-order poles on a subset of the negatives of the eigenvalues of H. 

The Newton method, which is based on a local linear approximation to 4(p ) ,  is then not likely 
to be the best method for solving (64) because the rational structure of 4 ’ ( p )  is ignored. Instead, 
an iteration for solving (64) can be derived based upon a local rational approximation to 4. The 
iteration is obtained by requiring +*(p)=y/(a+p) to satisfy 4 * ( p ) = 4 ( p )  and +*’(p)=$’(p) ,  
where we take p as the current approximation to the root p*. This approximation is then 
improved by solving for a p that satisfies 4*(fi)= 6. The resulting iteration is 

Reinsch3’ and Hebden33 observed independently that in order to solve equation (64) already 

In fact, Hebden’s algorithm can be viewed as Newton’s algorithm applied to the equation 
1 1  

Q(p)=-- -=O for , U E ] - I ~ ,  +a[. 
6 4 w  (74) 

The local rate of convergence of this iteration is quadratic, but the most important feature of 
(73) is that usually the number of iterations required to produce an acceptable approximation of 
p* is very small because the iteration is based upon the rational structure of 4’. Iteration (73) can 
be implemented without explicit knowledge of the eigensystem of H. This important observation, 
which is due to H e b d e ~ ~ , ~ ~  makes it possible to implement (73) merely by solving a linear system 
with H + pZ as coefficient matrix. This is easy to see since 

4 w  = II d ( P )  It, 4’(4 = - c 1/4(!41 WT (H + 1 - d ( d ,  
where ( H + p I ) d ( p ) =  -9. 
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Therefore the Hebden algorithm can be described as follows. 
Let p o 2 0  with H + p o I  positive definite and 4 ( p o ) > 6 .  

0. k = 0, 1, 2, . . . until convergence. 
1. Factor H+pkl=RTR. 
2. Solve R ~ R ~ =  -g. 
3. Solve RTq=p. 
4. Let 

k =  k +  1 and return to step 0. 

In this algorithm RTR is the Cholesky factorization of H + p l  with R upper triangular. The 
function R is convex and strictly decreasing on 1 - 4 ,  +a[. This fact was discovered by 
R e i n s ~ h ~ ~  and follows from the expression of 4 ( p ) .  It implies that Newton's method started from 
p o  E ] - A1, + 00 [ with Q ( p o )  > 0 (i.e. 4 ( p o )  - 6 > 0) produces a monotonically increasing sequence 
converging to the solution of 4(p) -S=O.  

111.2. The most negative curvature method 

The first algorithm stated above for solving the problem (LP) is very efficient when the matrix 
H is positive definite. If H is indefinite or only positive semidefinite, it would be preferable to use 
the following strategy due to Shultz et a1.34,35 for the solution of problem (LP) in the hard case 
(p= -A, in Theorem 1 and Lemma 2 of Appendix 11). 

1. Taking a E] - A1, c max( I I ,  1, LJ, where c > 1 is a constant which depends on each problem. 
2. Solving p =  - ( H + a I ) - ' g .  
3. If 11 p 11 > 6, then apply the Hebden method to H:= H + aI in order to find a direction d. 
4. If IIp 11 =6,  then d=p. 
5. If IIp 11 <6,  then d=p+tu, ,  where u1 is an eigenvector of H corresponding to 1, and < is 

Compared to the Hebden algorithm, the only modification introduced by the method of 
negative curvature is at step 5, where we should proceed as if p =  -A, in Theorem 1 and 
Lemma 2. 

The direction d obtained by this method gives as good a decrease of the quadratic model as a 
direction of sufficient negative curvature and satisfies the practical Conditions 1 and 2 that will be 
given in Appendix IV. 

chosen such that )I d 11 = 6 and sign(<) = sign(uTp). 

APPENDIX IV: CONVERGENCE RESULTS OF TR METHOD 

We recall here some well-known convergence results of the TR a l g ~ r i t h m . ' ~ , ~ ~ * ~ ~  

Theorem 2 

If the function $ is differentiable and bounded below on R", and if V$ is uniformly continuous, 

lim I/ v$(xk) 11 = O .  
then 

k + + m  
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Theorem 3 

If the function J/ is twice continuously differentiable and bounded below on R", and if V 2 $  is 
bounded on the level set { X E  R": $(x)I$(x , , ) } ,  then trust-region algorithms with H k = V Z $ ( x , )  
possess the following properties. 

1. lim,,,, IIVJ/(xk)II =O. 
2. If { x , }  is bounded, then there is a limit point x* with V z l l / ( x * )  positive semidefinite. 
3.  If x* is an isolated limit point of { x k } ,  then V 2 J / ( x * )  is positive semidefinite. 
4. If V211/(x*) is non-singular for some limit point x* of { X k } ,  then 

(a) V Z $ ( x * )  is positive definite 
(b) lim xk = x* and there exists an E > 0 and integer K such that 6,  > E for all k > K 
(c) The convergence is superlinear. 

Besides the superlinear convergence, the zero gradient and positive definiteness of the Hessian 
are also very important properties of the algorithm which encourage us to adapt the algorithm to 
our problem. Although in practice we use an approximation instead of computing the Hessian 
during the optimization, these properties are still present. 

In the above two theorems we have an implicit assumption that every step in the TR algorithm 
can be exactly carried out. For example, d, is supposed to be exactly solved. Apparently, this 
cannot always be true in practice. What conditions should every calculated direction satisfy in 
order to preserve the above properties? 

Before giving the convergence conditions, we define an additional notation: let d(g, H, 6) stand 
for a calculated direction (depending on g, H and 6), 

pred(g, H ,  6 ) =  -<g, d(g, H ,  6))-3(4g, H ,  6) ,  W g ,  H ,  6 ) ) .  

Our conditions that a step selection strategy may satisfy are as follows. 

Condition 1 

There exist cl, s1 > 0 so that V g E R", V H E R" " symmetric and V 6 > 0, 

pred(9, H ,  @ 2 c ,  II 9 II min(6, s1 II 9 1 1 / 1 1  H 11). 
Condition 2 

There exists c2 > 0 so that V g E R", V H E  R" " symmetric and V d > 0, 

pred(g, H, 6) 2 c2 [ - A1 ( H ) ]  6'. 

Here A, is the smallest eigenvalue of H. 

Condition 3 

If the matrix H is positive definite and 11 H-'glls6, then d(g, H ,  6)= -H-'g. 

Theorem 434, 3 5  

Let I): R" H R be twice continuously differentiable and bounded below, and let H ( x ) = V 2 @ ( x )  
satisfy IIH(x))I sP1 for all X E R " .  Suppose that a practical TR algorithm is applied to # ( x ) ,  
starting from x o  E R", generating a sequence { x k } ,  xk E R", k =  1, 2, . . . . 

1. If d(g, H, 6) satisfies Condition 1 and IIHk 11 I ;P2  for all k, then v J / ( x k )  converges to zero 
(first-order stationary point convergence). 
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2. If d(g, H, 6) satisfies Conditions 1 and 3,  H k = H ( x , )  for all k,  H ( x )  is Lipschitz continuous 
with constant L and x* is a limit point of { x k }  with H ( x * )  positive definite, then xk 
converges quadratically to x*. 

3. If d(g, H, 6) satisfies Conditions 1 and 2, Hk = H(Xk) for all k,  H ( x )  is uniformly continuous 
and { xk} converges to x*, then N(x*) is positive semidefinite (second-order stationary point 
convergence, with Statement 1). 
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